A Trigonometric Mutation Operation to Differential Evolution
نویسندگان
چکیده
Previous studies have shown that differential evolution is an efficient, effective and robust evolutionary optimization method. However, the convergence rate of differential evolution in optimizing a computationally expensive objective function still does not meet all our requirements, and attempting to speed up DE is considered necessary. In this paper, a new local search operation, trigonometric mutation, is proposed and embedded into the differential evolution algorithm. This modification enables the algorithm to get a better trade-off between the convergence rate and the robustness. Thus it can be possible to increase the convergence velocity of the differential evolution algorithm and thereby obtain an acceptable solution with a lower number of objective function evaluations. Such an improvement can be advantageous in many real-world problems where the evaluation of a candidate solution is a computationally expensive operation and consequently finding the global optimum or a good sub-optimal solution with the original differential evolution algorithm is too time-consuming, or even impossible within the time available. In this article, the mechanism of the trigonometric mutation operation is presented and analyzed. The modified differential evolution algorithm is demonstrated in cases of two well-known test functions, and is further examined with two practical training problems of neural networks. The obtained numerical simulation results are providing empirical evidences on the efficiency and effectiveness of the proposed modified differential evolution algorithm.
منابع مشابه
Optimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملAn Improved Trigonometric Differential Evolution
Differential evolution is an efficient and powerful population-based stochastic technique capable of handling non-differentiable, non-linear and multi-modal objective functions. In order to improve its performance, this paper introduces a best-trigonometric mutation strategy and applies a crossover rate update strategy to the proposed algorithm. The performance of the proposed algorithm is inve...
متن کاملOptimum sliding mode controller design based on skyhook model for nonlinear vehicle vibration model
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mut...
متن کاملOPTIMAL DESIGN OF GRAVITY DAM USING DIFFERENTIAL EVOLUTION ALGORITHM
The shape optimization of gravity dam is posed as an optimization problem with goals of minimum value of concrete, stresses and maximum safety against overturning and sliding need to be achieved. Optimally designed structure generally saves large investments especially for a large structure. The size of hydraulic structures is usually huge and thus requires a huge investment. If the optimizatio...
متن کاملImproved Strategies of Multi-objective Differential Evolution (MODE) for Multi-objective Optimization
Multi-objective optimization using an evolutionary computation technique is used extensively for solving conflicting multi-objective optimization problems. In this work, an improved strategy of multi-objective differential evolution (MODE) where the mutation strategy is changed to a trigonometric mutation approach is proposed. The proposed strategy along with other well known strategies of MODE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 27 شماره
صفحات -
تاریخ انتشار 2003